Defense against Universal Adversarial Perturbations
نویسندگان
چکیده
Recent advances in Deep Learning show the existence of image-agnostic quasi-imperceptible perturbations that when applied to ‘any’ image can fool a state-of-the-art network classifier to change its prediction about the image label. These ‘Universal Adversarial Perturbations’ pose a serious threat to the success of Deep Learning in practice. We present the first dedicated framework to effectively defend the networks against such perturbations. Our approach learns a Perturbation Rectifying Network (PRN) as ‘pre-input’ layers to a targeted model, such that the targeted model needs no modification. The PRN is learned from real and synthetic image-agnostic perturbations, where an efficient method to compute the latter is also proposed. A perturbation detector is separately trained on the Discrete Cosine Transform of the input-output difference of the PRN. A query image is first passed through the PRN and verified by the detector. If a perturbation is detected, the output of the PRN is used for label prediction instead of the actual image. A rigorous evaluation shows that our framework can defend the network classifiers against unseen adversarial perturbations in the real-world scenarios with up to 97.5% success rate. The PRN also generalizes well in the sense that training for one targeted network defends another network with a comparable success rate.
منابع مشابه
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Deep learning has become the state of the art approach in many machine learning problems such as classication. It has recently been shown that deep learning is highly vulnerable to adversarial perturbations. Taking the camera systems of self-driving cars as an example, small adversarial perturbations can cause the system to make errors in important tasks, such as classifying trac signs or det...
متن کاملDefense-gan: Protecting Classifiers against Adversarial Attacks Using Generative Models
In recent years, deep neural network approaches have been widely adopted for machine learning tasks, including classification. However, they were shown to be vulnerable to adversarial perturbations: carefully crafted small perturbations can cause misclassification of legitimate images. We propose Defense-GAN, a new framework leveraging the expressive capability of generative models to defend de...
متن کاملSpatially Transformed Adversarial Examples
Recent studies show that widely used deep neural networks (DNNs) are vulnerable to carefully crafted adversarial examples. Many advanced algorithms have been proposed to generate adversarial examples by leveraging the Lp distance for penalizing perturbations. Researchers have explored different defense methods to defend against such adversarial attacks. While the effectiveness of Lp distance as...
متن کاملGeneralizable Adversarial Examples Detection Based on Bi-model Decision Mismatch
Deep neural networks (DNNs) have shown phenomenal success in a wide range of applications. However, recent studies have discovered that they are vulnerable to Adversarial Examples, i.e., original samples with added subtle perturbations. Such perturbations are often too small and imperceptible to humans, yet they can easily fool the neural networks. Few defense techniques against adversarial exa...
متن کاملAdversarial Defense based on Structure-to-Signal Autoencoders
Adversarial attack methods have demonstrated the fragility of deep neural networks. Their imperceptible perturbations are frequently able fool classifiers into potentially dangerous misclassifications. We propose a novel way to interpret adversarial perturbations in terms of the effective input signal that classifiers actually use. Based on this, we apply specially trained autoencoders, referre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.05929 شماره
صفحات -
تاریخ انتشار 2017